1. 常见误区

有些观点认为使用消息系统的主要原因处于以下目的是有失偏颇的。虽然消息系统往往也会具有以写提及的功能,但是并不是我们使用消息系统的主要原因。

1.1 提高性能、加速传输

消息队列虽然提供了数据上的冗余,但它不是一种缓存。如果你想加速,直接在把生产者与消费者合在一起写,中间自己加一个全内存的queue,没有了持久化,没有了网络传输,岂不更快。

1.2 承担数据源

有人说,消息队列,就是一个数据源,作为下一级输入的数据源,存放中间结果用的。这当然没错,但是如果纯作存放中间结果用,你为什么不直接用数据库,或者用redis,说不定性能还更佳。

2. 使用消息系统的原因

2.1 核心思想——fire and forget

active mq文档中有一句话——fire and forget令人印象深刻。用中文来解释的话即解耦。它实现了生产者与消费者的有效解耦,降低了系统复杂性。作为一个生产者,它主要关心的应该就是自己的生产工作,它不应该关心自己生产的东西,到底被谁消费,如何消费。它应该就是简单的把生产好的东西,往一个仓库一放(即fire),然后就可以不管了(forget),毫无心理负担。至于后面的事,消息如何交付给消费者,这种交付方式是不是会丢失消息之类的可靠性问题一概不管(这也就是为什么消息队列不仅是一个中间结果存放区的原因)。这个作为中间仓库,负责与消费者打交道,同时保证后续交付可靠性的角色,就是消息队列来担当的。

2.2 解耦

在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

2.3 冗余

有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。

2.4 扩展性

因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。扩展就像调大电力按钮一样简单。

2.5 灵活性 & 峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见;如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

2.6 可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

2.7 顺序性

在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。Kafka保证一个Partition内的消息的有序性。

2.8 缓冲

在任何重要的系统中,都会有需要不同的处理时间的元素。例如,加载一张图片比应用过滤器花费更少的时间。消息队列通过一个缓冲层来帮助任务最高效率的执行———写入队列的处理会尽可能的快速。该缓冲有助于控制和优化数据流经过系统的速度。

2.9 异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

参考资料:http://blog.csdn.net/hadas_wang/article/details/50053803